Product Information # SK5-BALL **CompactPCI® Serial** • XMC Module Carrier PCIe® x8 Full Length Module 74mm x 149mm • Rear I/O Option Document No. 8819 • 27 November 2018 #### General The SK5-BALL is a peripheral slot board for CompactPCl® Serial systems and acts as carrier card for an XMC-style mezzanine module. XMC modules are specified by ANSI/VITA 42, as an advanced replacement for PMC modules. While using a similar form factor as PMC cards, XMC modules are provided with a PCI Express® interface. The SK5-BALL can be used together with 74x149mm² full length or 74x139mm² short length XMC mezzanine cards. The SK5-BALL is equipped with a bidirectional 8-lane PCI Express® Gen3 redriver, for optimum high speed signal integrity, and should be installed into a fat pipe peripheral slot of a CompactPCI® Serial backplane. As an option, the SK5-BALL can be populated with rear I/O connectors. The XMC carrier connector J16 signals are available across the CompactPCI® Serial backplane connectors P4/P5, and J14 has been routed to P3. SK5-0200-BALL w. Sample 149mm Length XMC Module ## Theory of Operation The SK5-BALL requires at least a single PCI Express® lane from the backplane, passed over across the backplane connector P1 to the onboard PCIe redriver circuit. Up to eight PCI Express® lanes are supported, when the SK5-BALL is installed into a CompactPCI® Serial fat pipe peripheral slot (P1/P2 backplane connectors in use). With a total link bandwidth of 64Gbps, even very demanding applications can be realized, such as a 10/40GBps Ethernet or USB 3.1 Gen2 XMC mezzanine module e.g. The on-board 8-lane bidirectional redriver is suitable up to 8.0Gbps (PCle 3.0) data transfer rate per lane, and ensures optimum signal integrity (wider opening with respect to the eye diagrams). The XMC module connector J15 is directly tied to the redriver circuit. In addition, a zero delay PCle Gen3 clock buffer is provided on-board. The SK5-BALL front panel is covered by a 17.5mm protruding metal shell, which allows 149mm full length XMC mezzanine modules to be accommodated. ### **Feature Summary** #### **Dimensions** - ► PICMG[®] CompactPCI[®] Serial standard (CPCI-S.0) peripheral slot card - Single size Eurocard 3U 4HP 100x160mm² - CompactPCI[®] Serial backplane connectors P1 & P2 (fat pipe slot up to PCIe x8) - Optional backplane connectors P3, P4, P5 for rear I/O usage #### XMC Mezzanine I/F - Suitable for 74x149mm² or 74x139mm² XMC modules according to VITA 42 - XMC module connector J15 (specified by VITA 42 as PCIe Gen1 interface) - Option XMC 2.0 module connector J15 (VITA 61) recommended for PCIe Gen2 - 8 x PCI Express[®] lanes Gen1 (2.5GT/s as specified by VITA 42), Gen2 (5.0GT/s as specified by VITA 61) or Gen3 (8GT/s) - ▶ 8-lane bidirectional PCIe Gen3 redriver/repeater for optimum signal integrity - PCI Express[®] Gen3 clock buffer for optimum signal integrity - ► +12V XMC VPWR - ► -12V regulator option (J15 Pin F8) - Option XMC module connector J14 (usable for rear I/O across P3) - Option XMC module connector J16 (usable for rear I/O across P4/P5) #### Option Rear I/O - Option CompactPCI[®] Serial backplane connectors P3, P4, P5 - XMC rear I/O connector J14 wired to P3 (32 differential pair signals) - XMC rear I/O connector J16 wired to P4 and P5 (78 signals) - ▶ P5 can also deliver power to the rear I/O module (+12V, +5V, +3.3V) - Suitable e.g. for PIM carrier rear I/O module (VITA 36 Draft) - EKF offers custom specific rear I/O module development ## **Applications** - System integration of special functions not available as CompactPCI[®] Serial card - ► I/O controllers with front I/O connectors - FPGA or GPU based parallel computing XMC modules ## Feature Summary ## Regulatory, Environment - Designed & manufactured in Germany - ► ISO 9001 certified quality management system - Long term availability - Coating, sealing, underfilling on request - RoHS compliant 2011/65/EC - ► Operating temperature -40°C to +85°C (industrial temperature range) - ► Storage temperature -40°C to +85°C, max. gradient 5°C/min - ► Humidity 5% ... 95% RH non condensing - ► Altitude -300m ... +3000m - Shock 15g 0.33ms, 6g 6ms - ▶ Vibration 1g 5-2000Hz - ► MTBF 62.2 years - ► EC Regulatory EN55022, EN55024, EN60950-1 (UL60950-1/IEC60950-1) # Block Diagram # **Board Assembly** Front Shell not Shown Front Shell not Shown # Front Panel © EKF • draft - do not scale • ekf.com SK5-BALL #### XMC Socket J15 ANSI/VITA 42.3 defines a primary **XMC** connector, which is mandatory for PCIe fabric. The secondary XMC connector is optional (either fabric or user I/O). The SK5-BALL is an XMC carrier board with a 8-Lane PCI Express[®] host interface, which is wired through the primary connector XMC J15. A secondary connector is not provided. XMC Receptacle CompactPCI[®] Serial cards are supplied by +12V only. This voltage is therefore used to fed the XMC connector J15 VPWR pins, across a power FET which is turned on when the front panel microswitch is activated (ejector lever position up = card locked). A switching regulator on the SK5-BALL provides +3.3V up to 3A to the XMC connector J15 3.3V pins. In addition, -12V can be generated by an optional inverting regulator. As an option, the SK5-BALL can be equipped with a XMC 2.0 type connector J15, as specified by VITA 61.0. With MIL/Aero environment in mind, the new connector incorporates a number of features for improved mechanical performance, and has been electrically characterized to support 5GHz+ allowing PCI Express® 2.0 (the VITA 42 connector in contrast has only been characterized to 3.125 Ghz). Since XMC (VITA 42) and XMC 2.0 (VITA 61) connectors are not intermateable, both the XMC carrier card and the XMC module must be populated with the same type of connector. The VITA 61 XMC 2.0 connector housing is off-white in colour as a visual key to differentiate it from the black VITA 42 legacy connector. Please specify your needs to sales@ekf.com when ordering the SK5-BALL. Classic J15 XMC Connector Advanced J15 XMC 2.0 Connector (Option) | | XMC Co | onnector J15 - | PCle Fabric • I | EKF Part No. 2 | 75.21.10.114. | 01 | |----|----------|----------------|-----------------|----------------|---------------|--------------------| | | a | b | С | d | е | f | | 1 | РЕТОРО | PETONO | +3.3V | PETOP1 | PETON1 | +12V VPWR | | 2 | GND | GND | TRST# 11) | GND | GND | MRSTI# 6) | | 3 | PETOP2 | PETON2 | +3.3V | PETOP3 | PETON3 | +12V VPWR | | 4 | GND | GND | TCK | GND | GND | MRSTO# 7) | | 5 | PETOP4 | PETON4 | +3.3V | PETOP5 | PETON5 | +12V VPWR | | 6 | GND | GND | TMS | GND | GND | +12V VPWR | | 7 | PETOP6 | PETON6 | +3.3V | PETOP7 | PETON7 | +12V VPWR | | 8 | GND | GND | TDI | GND | GND | -12V ⁸⁾ | | 9 | RFU | RFU | RFU | RFU | RFU | +12V VPWR | | 10 | GND | GND | TDO | GND | GND | GA0 ³⁾ | | 11 | PEROPO | PERONO | MBIST# | PEROP1 | PERON1 | +12V VPWR | | 12 | GND | GND | GA1 3) | GND | GND | MPRESENT# 9) | | 13 | PEROP2 | PERON2 | +3.3V 4) | PEROP3 | PERON3 | +12V VPWR | | 14 | GND | GND | GA2 3) | GND | GND | MSDA 10) | | 15 | PEROP4 | PERON4 | RFU | PEROP5 | PERON5 | +12V VPWR | | 16 | GND | GND | MVMRO 5) | GND | GND | MSCL 10) | | 17 | PEROP6 | PERON6 | RFU | PEROP7 | PERON7 | RFU | | 18 | GND | GND | RFU | GND | GND | RFU | | 19 | CLKP_XMC | CLKN_XMC | RFU | WAKE# | ROOTO# | RFU | pin positions printed italic/gray: reserved by specification / not connected - GA2 GA1 GA0 (I2C address assigned to module) strapped to 1 0 1 by default - 4) Module +3.3V AUX - MVMRO (Module Volatile Memory Read Only) is an optional input to the XMC module, connected to an optional on-board GPIO - 6) MRSTI# (Module Reset Input) tied to platform reset - MRSTO# (Module Reset Output) is an optional output by the XMC module, connected to an optional on-board GPIO - -12V is provided by the SK5-BALL as an option only (inverting regulator, -12V 0.2A) - 9) MPRESENT# (Module Present), connected to backplane connector P1 signal PCIE_EN# - MSCL/MSDA derived from backplane connector P1 signals I2C SDA/SCL via optional I2C switch - 10k to GND ## XMC Connector J14 - Rear I/O (Option) | | XMC-J | 14 - Rear I/O | | | |---|-------|---------------|-----------|----| | | 1 | P3 F8 N16 | P3 C8 N0 | 2 | | | 3 | P3 E8 P16 | P3 B8 P0 | 4 | | | 5 | P3 L8 N17 | P3 I8 N1 | 6 | | | 7 | P3 K8 P17 | P3 H8 P1 | 8 | | | 9 | P3 E7 N18 | P3 B7 N2 | 10 | | | 11 | P3 D7 P18 | P3 A7 P2 | 12 | | | 13 | P3 K7 N19 | P3 H7 N3 | 14 | | 1 2 | 15 | P3 J7 P19 | P3 G7 P3 | 16 | | | 17 | P3 F6 N20 | P3 C6 N4 | 18 | | Ę T | 19 | P3 E6 P20 | P3 B6 P4 | 20 | | Part No. 275.01.08.064.03 • © EKF • ekf.com | 21 | P3 L6 N21 | P3 I6 N5 | 22 | | <u></u> | 23 | P3 K6 P21 | P3 H6 P5 | 24 | | 5.01.08.064.03 • © EKF | 25 | P3 E5 N22 | P3 B5 N6 | 26 | | 03 • | 27 | P3 D5 P22 | P3 A5 P6 | 28 | | 3.064. | 29 | P3 K5 N23 | P3 H5 N7 | 30 | | .01.08 | 31 | P3 J5 P23 | P3 G5 P7 | 32 | | . 275 | 33 | P3 F4 N24 | P3 C4 N8 | 34 | | art No | 35 | P3 E4 P24 | P3 B4 P8 | 36 | | 6 | 37 | P3 L4 N25 | P3 I4 N9 | 38 | | - | 39 | P3 K4 P25 | P3 H4 P9 | 40 | | 63 64 | 41 | P3 E3 N26 | P3 B3 N10 | 42 | | | 43 | P3 D3 P26 | P3 A3 P10 | 44 | | | 45 | P3 K3 N27 | P3 H3 N11 | 46 | | | 47 | P3 J3 P27 | P3 G3 P11 | 48 | | | 49 | P3 F2 N28 | P3 C2 N12 | 50 | | | 51 | P3 E2 P28 | P3 B2 P12 | 52 | | | 53 | P3 L2 N29 | P3 I2 N13 | 54 | | | 55 | P3 K2 P29 | P3 H2 P13 | 56 | | | 57 | P3 E1 N30 | P3 B1 N14 | 58 | | | 59 | P3 D1 P30 | P3 A1 P14 | 60 | | | 61 | P3 K1 N31 | P3 H1 N15 | 62 | | | 63 | P3 J1 P31 | P3 G1 P15 | 64 | Despite the PMC connector J14 was originally defined for 64 single-ended signals, the SK5-BALL here follows a differential pair routing schema, similar to VITA 46.9. Any differential pair N/P 0-31 is comprised of two J14 connector signal pins, with J14 pin numbers n and n+2. All signal pairs are available via the backplane connector P3. # XMC Connector J16 - Rear I/O (Option) | | XMC | Connector J16 | - Rear I/O • El | KF Part No. 275 | 5.21.10.114.0 | 1 | |----|-------------|---------------|-----------------|-----------------|---------------|-------------| | | а | b | С | d | е | f | | 1 | P5 J3 DP00+ | P5 K3 DP00- | P5 L2 UD_SE | P5 E4 DP01+ | P5 F4 DP01- | P5 E3 UD_SE | | 2 | GND | GND | P5 K2 UD_SE | GND | GND | P5 D3 UD_SE | | 3 | P5 J1 DP02+ | P5 K1 DP02- | P5 L8 UD15- | P5 E2 DP03+ | P5 F2 DP03- | P5 E1 UD14- | | 4 | GND | GND | P4 K8 UD15+ | GND | GND | P5 D1 UD14+ | | 5 | P4 E8 DP04+ | P4 F8 DP04- | P4 K7 UD13- | P4 H8 DP05+ | P4 I8 DP05- | P4 C8 UD12- | | 6 | GND | GND | P4 J7 UD13+ | GND | GND | P4 B8 UD12+ | | 7 | P4 D7 DP06+ | P4 E7 DP06- | P4 L6 UD5- | P4 G7 DP07+ | P4 H7 DP07- | P4 B7 UD17- | | 8 | GND | GND | P4 K6 UD5+ | GND | GND | P4 A7 UD17+ | | 9 | P4 E6 DP08+ | P4 F6 DP08- | P4 K5 UD4- | P4 H6 DP09+ | P4 I6 DP09- | P4 C6 UD1- | | 10 | GND | GND | P4 J5 UD4+ | GND | GND | P4 B6 UD1+ | | 11 | P4 D5 DP10+ | P4 E5 DP10- | P4 L5 UD11- | P4 G5 DP11+ | P4 H5 DP11- | P4 B5 UD6- | | 12 | GND | GND | P4 K4 UD11+ | GND | GND | P4 A5 UD6+ | | 13 | P4 E4 DP12+ | P4 E5 DP12- | P4 K3 UD16- | P4 H4 DP13+ | P4 I4 DP13- | P4 C4 UD2- | | 14 | GND | GND | P4 J3 UD16+ | GND | GND | P4 B4 UD2+ | | 15 | P4 D3 DP14+ | P4 E3 DP14- | P4 L2 UD3- | P4 G3 DP15+ | P4 H3 DP15- | P4 B3 UD8- | | 16 | GND | GND | P4 K2 UD3+ | GND | GND | P4 A3 UD8+ | | 17 | P4 E2 DP16+ | P4 F2 DP16- | P4 K1 UD9- | P4 H2 DP17+ | P4 I2 DP17- | P4 C2 UD7- | | 18 | GND | GND | P4 J1 UD9+ | GND | GND | P4 B2 UD7+ | | 19 | P4 A1 DP18+ | P4 B1 DP18- | P4 D1 UD_SE | P4 G1 DP19+ | P4 H1 DP19- | P4 E1 UD_SE | ## P1/P2 CompactPCI® Serial Backplane Connectors | | P1 CompactPCI® Serial Peripheral Slot Backplane Connector EKF Part #250.3.1206.20.02 • 72 pos. 12x6, 14mm Width | | | | | | | | | | | | |----|--|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | P1 | А | В | С | D | Е | F | G | Н | I | J | K | L | | 6 | GND | PE
TX02+ | PE
TX02- | GND | PE
RX02+ | PE
RX02- | GND | PE
TX03+ | PE
TX03- | GND | PE
RX03+ | PE
RX03- | | 5 | PE
TX00+ | PE
TX00- | GND | PE
RX00+ | PE
RX00- | GND | PE
TX01+ | PE
TX01- | GND | PE
RX01+ | PE
RX01- | GND | | 4 | GND | USB2+ | USB2- | GND | PE
CLK+ | PE
CLK- | GND | SATA
TX+ | SATA
TX- | GND | SATA
RX+ | SATA
RX- | | 3 | USB3
TX+ | USB3
TX- | GA0 | USB3
RX+ | USB3
RX- | GA1 | SATA
SDI | SATA
SDO | GA2 | SATA
SCL | SATA
SL | GA3 | | 2 | GND | I2C
SCL | I2C
SDA | GND | RSV | RSV | GND | RST# | WAKE# | GND | PE
EN# | SYS
EN# | | 1 | +12V | STBY | GND | +12V | +12V | GND | +12V | +12V | GND | +12V | +12V | GND | pin positions printed gray: not connected The on-board PCI Express[®] signal redrivers/repeaters are suitable for generation 1, 2 and 3 (up to 8Gbps). Both the PE receive/transmit signals and the PE reference clock are buffered. Operation with Gen2 or Gen3 speed may be functional but cannot be guaranteed however, since not specified by VITA42, mainly with respect to the XMC mezzanine connector. If possible, choose XMC 2.0 connectors (white housings) on both the carrier card and the XMC mezzanine card for reliable PCI Express[®] Gen2/3 operation. A maximum of eight PCI Express[®] lanes is provided over the backplane connectors P1/P2, when the SK5-BALL is positioned on a 'Fat Pipe' CompactPCI[®] Serial peripheral slot (typically adjacent to the system slot). For XMC modules which employ only a single PCIe lane, the SK5-BALL can also be installed in any ordinary CompactPCI[®] Serial peripheral slot, whithout any performance loss. | | P2 CompactPCI [®] Serial Peripheral Slot Backplane Connector EKF Part #250.3.1208.20.00 • 96 pos. 12x8, 16mm Width | | | | | | | | | | | | |----|--|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | P2 | А | В | С | D | Е | F | G | Н | ı | J | K | L | | 8 | GND | | | GND | | | GND | | | GND | | | | 7 | | | GND | | | GND | | | GND | | | GND | | 6 | GND | | | GND | | | GND | | | GND | | | | 5 | | | GND | | | GND | | | GND | | | GND | | 4 | GND | | | GND | | | GND | | | GND | | | | 3 | | | GND | | | GND | | | GND | | | GND | | 2 | GND | PE
TX06+ | PE
TX06- | GND | PE
RX06+ | PE
RX06- | GND | PE
TX07+ | PE
TX07- | GND | PE
RX07+ | PE
RX07- | | 1 | PE
TX04+ | PE
TX04- | GND | PE
RX04+ | PE
RX04- | GND | PE
TX05+ | PE
TX05- | GND | PE
RX05+ | PE
RX05- | GND | pin positions left empty: not connected # P3 CompactPCI® Serial Backplane Connector (Option Rear I/O) | | | P3 | | | | | | ckplane
x8, 16mm | | ctor | | | |----|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------------------|------------------|------------------|------------------|------------------| | P3 | А | В | C | D | Е | F | G | Н | I | J | K | L | | 8 | GND | J14
4
P0 | J14
2
N0 | GND | J14
3
P16 | J14
1
N16 | GND | J14
8
P1 | J14
6
N1 | GND | J14
7
P17 | J14
5
N17 | | 7 | J14
12
P2 | J14
10
N2 | GND | J14
11
P18 | J14
9
N18 | GND | J14
16
P3 | J14
14
N3 | GND | J14
15
P19 | J14
13
N19 | GND | | 6 | GND | J14
20
P4 | J14
18
N4 | GND | J14
19
P20 | J14
17
N20 | GND | J14
24
P5 | J14
22
N5 | GND | J14
23
P21 | J14
21
N21 | | 5 | J14
28
P6 | J14
26
N6 | GND | J14
27
P22 | J14
25
N22 | GND | J14
32
P7 | J14
30
N7 | GND | J14
31
P23 | J14
29
N23 | GND | | 4 | GND | J14
36
P8 | J14
34
N8 | GND | J14
35
P24 | J14
33
N24 | GND | J14
40
P9 | J14
38
N9 | GND | J14
39
P25 | J14
37
N25 | | 3 | J14
44
P10 | J14
42
N10 | GND | J14
43
P26 | J14
41
N26 | GND | J14
48
P11 | J14
46
N11 | GND | J14
47
P27 | J14
45
N27 | GND | | 2 | GND | J14
52
P12 | J14
50
N12 | GND | J14
51
P28 | J14
49
N28 | GND | J14
56
P13 | J14
54
N13 | GND | J14
55
P29 | J14
53
N29 | | 1 | J14
60
P14 | J14
58
N14 | GND | J14
59
P30 | J14
57
N30 | GND | J14
64
P15 | J14
62
N15 | GND | J14
63
P31 | J14
61
N31 | GND | P3 can be used e.g. for a rear I/O PIM carrier module. XMC P14/J14 derived signals would be routed across P3/rJ3 to the J14/P14 connectors of a VITA 36 PMC I/O module (aka PIM). Despite the PMC connector J14 was originally defined for 64 single-ended signals, the SK5-BALL here follows a differential pair routing schema, similar to VITA 46.9. Any differential pair N/P 0-31 is comprised of two J14 connector signal pins, with J14 pin numbers n and n+2. # P4 CompactPCI® Serial Backplane Connector (Option Rear I/O) | | | P4 | | | | | | ckplane
x8, 16mm | | ctor | | | |----|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|----------------------------|---------------------|---------------------|---------------------|---------------------| | P4 | А | В | С | D | Е | F | G | Н | I | J | K | L | | 8 | GND | J16
F6
UD12+ | J16
F5
UD12- | GND | J16
A5
DP04+ | J16
B5
DP04- | GND | J16
D5
DP05+ | J16
E5
DP05- | GND | J16
C4
UD15+ | J16
C3
UD15- | | 7 | J16
F8
UD17+ | J16
F7
UD17- | GND | J16
A7
DP06+ | J16
B7
DP06- | GND | J16
D7
DP07+ | J16
E7
DP07- | GND | J16
C6
UD13+ | J16
C5
UD13- | GND | | 6 | GND | J16
F10
UD1+ | J16
F9
UD1- | GND | J16
A9
DP08+ | J16
B9
DP08- | GND | J16
D9
DP09+ | J16
E9
DP09- | GND | J16
C8
UD5+ | J16
C7
UD5- | | 5 | J16
F12
UD6+ | J16
F11
UD6- | GND | J16
A11
DP10+ | J16
B11
DP10- | GND | J16
D11
DP11+ | J16
E11
DP11- | GND | J16
C10
UD4+ | J16
C9
UD4- | GND | | 4 | GND | J16
F14
UD2+ | J16
F13
UD2- | GND | J16
A13
DP12+ | J16
B13
DP12- | GND | J16
D13
DP13+ | J16
E13
DP13- | GND | J16
C12
UD11+ | J16
C11
UD11- | | 3 | J16
F16
UD8+ | J16
F15
UD8- | GND | J16
A15
DP14+ | J16
B15
DP14- | GND | J16
D15
DP15+ | J16
E15
DP15- | GND | J16
C14
UD16+ | J16
C13
UD16- | GND | | 2 | GND | J16
F18
UD7+ | J16
F17
UD7- | GND | J16
A17
DP16+ | J16
B17
DP16- | GND | J16
D17
DP17+ | J16
E17
DP17- | GND | J16
C16
UD3+ | J16
C15
UD3- | | 1 | J16
A19
DP18+ | J16
B19
DP18- | GND | J16
C19
UD_SE | J16
F19
UD_SE | GND | J16
D19
DP19+ | J16
E19
DP19- | GND | J16
C18
UD9+ | J16
C17
UD9- | GND | pin positions printed white/italic: not connected DP**+/DP**- are differential signal pairs, assignment according VITA 42.0 table 5-4 UD**+/UD**- are differential signal pairs, user definable by customer UD_SE are single ended signals, user definable by customer # P5 CompactPCI® Serial Backplane Connector (Option Rear I/O) | | P5 CompactPCI® Serial Peripheral Slot Backplane Connector EKF Part #250.3.1206.20.00 • 72 pos. 12x6, 12mm Width | | | | | | | | | | | | |----|--|-------|------|--------------------|--------------------|--------------------|-----------------------|-----------------------|-----|-----------------------|----------------------|--------------------| | P5 | А | В | С | D | Е | F | G | Н | I | J | K | L | | 6 | GND | +12V | +12V | GND | +12V | +12V | GND | +5V | +5V | GND | +5V | +5V | | 5 | +3.3V | +3.3V | GND | +3.3V | +3.3V | GND | GPIO
SATA
SDI * | GPIO
SATA
SDO * | GND | GPIO
SATA
SCL * | GPIO
SATA
SL * | GND | | 4 | GND | 10 | 10 | GND | J16
D1
DP01+ | J16
E1
DP01- | GND | 10 | 10 | GND | RST
1) | 10 | | 3 | 10 | 10 | GND | J16
F2
UD_SE | J16
F1
UD_SE | GND | <i>12C Data</i> 2) | <i>12C Clock</i> 2) | GND | J16
A1
DP00+ | J16
B1
DP00- | GND | | 2 | GND | 10 | 10 | GND | J16
D3
DP03+ | J16
E3
DP03- | GND | 10 | 10 | GND | J16
C2
UD_SE | J16
C1
UD_SE | | 1 | 10 | 10 | GND | J16
F4
UD14+ | J16
F3
UD14- | GND | | 10 | GND | J16
A3
DP02+ | J16
B3
DP02- | GND | pin positions printed white/italic: not connected * custom specific usage - wired to P1 - partial support only by EKF CPU cards 1) buffered platform reset signal from P1 2) wired to on-board SMBus/I2C logic DP**+/DP**- are differential signal pairs, assignment according VITA 42.0 table 5-4 UD**+/UD**- are differential signal pairs, user definable by customer UD_SE are single ended signals, user definable by customer ## Option 12V Axial Fan As an option, the SK5-BALL can be equipped with a bottom mount 12V DC compact fan, for cooling of high power consuming XMC mezzanine modules. This would result in an 8HP or even wider front panel width assembly (backplane with system slot and fat pipe slots on the right side recommended). The mounting holes would be suitable for a 40mm axial fan. The pigtail wires of the cooling fan can be soldered directly to the SK5-BALL PCB, using the adjacent terminal pads. Ordering Information For popular SK5-BALL SKUs please refer to www.ekf.com/liste/liste 21.html#SK4 | SK5-BALL Links | | | | | | | |----------------|----------------------------|--|--|--|--|--| | SK5-BALL Home | www.ekf.com/s/sk5/sk5.html | | | | | | | Related Links | | | | | | | | | |--|----------------------------------|--|--|--|--|--|--|--| | SK2-SESSION Home
Suitable for 149mm Length XMC PCIe x4 | www.ekf.com/s/sk2/sk2.html | | | | | | | | | SK3-MEDLEY Home
Suitable for 139mm Length XMC PCIe x8 | www.ekf.com/s/sk3/sk3.html | | | | | | | | | SK4-WALTZ Home
Suitable for 149mm Length XMC PCIe x8 | www.ekf.com/s/sk4/sk4.html | | | | | | | | | EK4-WALTZ Home
CompactPCI [®] Express (PXI Express™) | www.ekf.com/e/ek4/ek4.html | | | | | | | | | CompactPCI [®] Serial Overview | www.ekf.com/s/smart_solution.pdf | | | | | | | | | | XMC Mezz | anine Modules from EKF | |-------------|--------------|---------------------------------| | XMC Ove | erview | www.ekf.com/d/xmc_concise.pdf | | DB4-EAGLE | USB 3.0 | www.ekf.com/d/dusb/db4/db4.html | | DC2-STAG | PCIe Cabling | www.ekf.com/d/dpxc/dc2/dc2.html | | DN1-PIKE | GbE | www.ekf.com/d/dnic/dn1/dn1.html | | DN3-SHARK | 10GbE | www.ekf.com/d/dnic/dn3/dn3.html | | DS1-LEOPARD | SAS | www.ekf.com/d/dsas/ds1/ds1.html | | DU1-MUSTANG | RS-485 iso | www.ekf.com/d/dcom/du1/du1.html | | DU2-PONY | RS-232 iso | www.ekf.com/d/dcom/du2/du2.html | | DV1-DRAGON | VGA/DVI | www.ekf.com/d/dgxa/dv1/dv1.html | | DX2-COUGAR | SATA | www.ekf.com/d/dide/dx2/dx2.html | | DX4-BADGER | mSATA | www.ekf.com/d/dide/dx4/dx4.html | | DX5-ANT | M.2 SATA | www.ekf.com/d/dide/dx5/dx5.html | Industrial Computers Made in Germany boards. systems. solutions. # Beyond All Limits: EKF High Performance Embedded